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THE cOUpLI NG OF Il%ExURAL PR OpELLER V13RATI oNs WITH.,.. !.’ ,“
THE TORSIONAL CRANKSHAFT VIBRATIONS*

By. J. Meyer - .

The exact mathematical treatment of the problem is
possible by replacing” the propeller. blade by a homogcme–
ous prismatic rod. Conclusions can then be drawn as to
the behavior of an actual propel ler., since tests on pro–
peller blades have indicated a qualitative agreement
with the homogeneous rod, The natural frequencies are
determines and the stressing of the systems under the
various vibration modes are discussed...

>,. .; . ..
SUMMARY , ‘ ,-

.-

For. the homogeneous prismatic; rod assumed equivalent
to the propelle~ blade, the matliematical so’lution for the
coupling of.the f-1exura.1with the torsional. vibrations of
an elastic system consisting of a single mass or of sev–
eral masses is”presented, and valid conclusions ar’e de–
rived for the propeller.” Extensive t,ests .confirrned the
theoretical results, -;;.

The most. important conclusion derived was that the
coincidence of a harinonia”.with ..thetorsional vibration,
since it give-s,two close–lying natural frequencies of
the crankshaft–propelzer Qystem is unfavorable, ,the crank–
shaft and hub, the propeller blade root, and also the “
blade itself. at the tip being tho’feby stressed to a“dan–
gerous degree. By spreading Apart the two frequenci-es,
as can be done by a change in the elasticity of the tor—
sion”ally vibrating’ component system, the harmonics in
question can be rendered har”mless because their position
is”little affected ly .a change in the magnitudes of the
torsionally vibrating system, ‘The torsional vibration of
..-, “.,. ..- .—. . .!-’-----_-__--__--_,.--.-+________________________________‘,

*tll?ieX.opplqng’ d~r Ln”ftschrau’ben-Biegeschwi,ngun&pn mit
den Kurbelwell,e&Drehschwingungen. ‘1 Jahrbuch 1938 deb
deutsohen Luftfahrtforschung, pp. II T41-J59. .
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the system caniot , how_6ier”,-be el”i-minated by similar
combinations. This can-be done only ,%y *employing a
damper or an elastic bul (refer enc~i:l~). The maximum
vi%rktion’rnomeiit in-the blade root - I&rrimg a few excep–
tions – always acts in the direction of the chord.

OBJECT OF THE INVESTIGATION

In recent” years the question as to the catise and
prevention of propeller failure in flight has become of
greatest importance. The failures are all found to be
caused 3Y fatigue stresses due to the flexural vibrations
of the propeller blade. A torsiogram of an As–8 engine
was of particular interest (fig. 1). The curve shows,
instead cf a single maximur,~, two maximums of the sixth
order. This phenomenon indicates vibrations of the pro-
peller %lade because new degrees of freedom can be added
to those of the crankshaft only through the presence of
an elastic propeller llade. It may be remarked in pass–
ing that in a fef,~cases vibration of the propeller could
be established by the naked eye alone. In order to be
able to measure experimentally the propeller vibrations
occurring in flight, the DVL, since 1934, has been em–
ploying the’ test apparatus shown in figure 2 (reference
17). The setup reproduces the vibrations of the actual
radial engine—propeller system, A shaft supported on
t~o bearings and the torsional, elasticity of which is

,

of the order of magnitude corresponding to that of most
crankshafts carries at one end the propeller with hub to
be investigated and at the other end a rotating mass on
which .tmo unbalanced .weights, displaced in the same sense
ky. 18?0 excite th9 torsioi.al b.armonics, corresponding to

- the- ~u’re vilration torque of the engine. The mass’ moment-.
of iner.t’ia’likewise corresponds approximately to that of
a large radial “engine. with the most usual types of pro–
pellers, for rotations of the unbalanced weight up to
10,0’00 rpm, there were always obtatned three frequencies
at which the entire, system strongly vilrated (table 1).
That appears striking in table 1 is that the frequencies
of the center column are practically constant while those
of the other two are not, and hence dependto a’ large
extent on the given propeller type. The form of the vi–
bration of the second and third frequencies was in most
of the cases very similar, although fo’r ttie second fre-
quency the rotating mass - with few exceptions – under-
ment considerably larger deflections. The notation
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of the columns w-ill be explained. In the

investigations the question arose to what
extent the flexural propeller vibrations measured on this
setup wer,e’independent of the couyled. torsionally vibrat-
ing system.

In the prese’nt paper, starting from the differential
equation setup’ for the elastic propeller, the relations
holding for the coupling of the flexural, propeller vibra-
tions with the torsional crankshaft” vibrations are derived.*
An explanation is t,hereby provided for.the above:mentioned
phenomena. The natural frequencies of the crankshaft-
propeller sjstem cannot, however, be numerical].y determined
in th”is manner. An improved test setup is proposed that
can also be used for in-line engines. It is shown, further-
more, that coincidence of the natural frequencies of both
component systems, ‘crankshaft and propeller, is particu-
larly dangerous and that the natural frequencies of the
entire system and’the deflections for equal exciting torque
in general de-oend on the propeller pitch angle.

,.-

SETUP OF Th~ DIFI?ZRENTI.AL EQUATION NOR FREE VIBRATION

There is first considered the ecluivalent system of
a radial engine with propeller assuned rigid (fig. 3) .

(1)

with the solution
9D + eL

U2=C ——.—. -—
GD 6L

or
—————---.__.—————_———___——-———---- ——-—-- —-—————————-——_—____ —

*At ~]:e coflclllsi,o~of the above investigation there was

brou~hi to the attention of the author a paper which like–
wise takes up the saw-e problem. (See reference 19 .)

— -. ——..—. . —. —
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‘Actually, however, on account of the elasticity of the
propeller blades th’e crankshaft will not be coupled to a
rigid mass but to a vibrating structure with infinite
degrees of freedom. The propeller is therefore replaced
hy an elastic rod which is fixed to a hub, 61v [fig. 4).

Equilibrium is possi-ole only if the rod, vibrating
at position x = t, produces ‘a moment the component of
which in the plane at right angles to the shaft ’axis is
exactly equal to that acting on the mass eN. A rod can

vibrate in two mutually perpendicular directions, corre-
sponding to the twQ principal axes of inertia ,of its -
cross section. In the general case if the rod is s~t. ob—
lig.ue to the torsional vi’oration plane, vibrations about
the two princii~ai axes will ke excited. If Y(x) denGtes
the deflection, th~ inf);hent produced about the longer axis
(the chord) is EJ{t)~ (2) and that a’o~ut the shorter

axis 3J~:, J$j. Both moments possess a component in

the torsional vibration plane. If .a denotes the angle
wllic”hthe shorter principal axis of the section makes
with the pl,ane of rotation, tlie differential equation of
the ~ystem from vhich the natural frequencies are computed
when there are S, rods is

(2)

with the boundary conditions

.
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1. yffl (o) = o 3, y@ = q
(1) N

cos a; yth = cfN sin a
(1)m.- ...-m.....-d.. . ... ..-.*

2. y“ (o) = o = rcf
4“ % N

= rcp
‘Os ‘; ‘~1) N

sin ~

and p(x) and J(x) may %e written w(z)Q(x) and
J(@x). The function y(x, t) , according to Bernoulli,

may be written y(x, t) = y(x) sin wt. The partial differ–
ent ial equation then goes over into the ordinary linear
equation

and setting

the system of equations becomes

II

[

,,h
~?x) ‘(x)1 h

o- i4 Q(x) Y(x) =

(4)

% The solution of the prGblem depends on the so,lution’,of the
last two differential equations (~). The variation of the
functions J(x) and W(X) over the propeller length is
such, tiowever , that great difficulty is encountered in oh- ,
taining the complete, solution in exact form. The propeller
blades are therefore replaced by homogeneous rods of
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‘rectafig@a’r section. For this case the so-l”ution can be
exactly obtained, and provides information as to the rela– .
tions for the actua,l propeller.

SOLUTION IOR THE HOMOGENEOUS ROD

Tor the prismatic homo~eneous roil with P = Q = 1
the two differential equations (3,) siW?~ifY to

IV fl -_ # fl. “o

‘(x) y(x) =

IVh_i Qh

‘(x)
Y(x) = o

}

(5)

Taking account of the boundary conditions 1 and 2, there
are obtained for y(x) the expressions

‘z (Sinh kx + sin kx)Yf 1 Aft (Cosh kX + COS kx) + B
(x) =

h
Y(x) = Ah (Cosh ix + cos ix) + B,h (Sinh ix + sin ix)

‘“~hler e A and 3 are constants.

The followin~ brief noiaticn is ‘Jsed for several ex–
:JressiO~lS ariSill~ in the CoP,~u~abion of Y’/z) and satis–

fying the boundary conditions 3 and 4, where kz = kl
Canal il = i!

Sinhkt cos kl - Coshkl sin k’——_-—..——— ——— ——_— ——— —_— -——- ————— = f (k!)

1 + Cosh k! COS k’

Sinh k! – sin k! Cosh kr - COS kt_—— ——— ——— ——— ——-— = Cr(kl): ———-— —. —————— ——-----= T(kl)

Cosh k! + COS k! Cosh kl + COS k!

siLQilarly for i’.

!l?hereis then obtained. for

. ~f z “nfl ‘- ‘h h
,.

‘u(t) 3’(2) Cos a+ ‘(2) “/t) ‘in a
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the expression ,.:’

“{’[ 1 }+J~l) @N sin2 CG$,, f(g”) l-~ i.’cr(i,~) + ~.il T(i’)

:-,

The above can be written briefly

!,

f lr r’
~h

J(t) $3T COS2 CL $: ~G(k~) + _# ~+ tana ~ H(il)

‘(2) .
1

v:h9re G(k!) and H(il) den6te the generally different
functions in the braces.

!Che expression which is to be set equal to

_~E {Jft “f2 ,1h

}L (1) ‘(2) Cos a+ ‘~~) Y(~~ sin a

is

‘D ‘IT ‘4 – C(QD i- eN) W2
–--––:–––––––––––--–––––– ON : J– @ ,. .

-’c— 9D W2
fM-- N

~-
\

~ ~2:”and ‘W2 = V2 kt4’
EJ~~~

Setting c wher e v~ = –--– ~
i; ., .!~.

~(t)z

there is obtained

Eliminating @N,”the so~utioq becomes

1- :
-SEJ~j) $~’’fl,I(kI).& -———.-.————.:—-——.————--—.—,—.————---------

2’

.[
G(kI) + J~tl !--!,tan2 ~ H(it)Cos a

jf~ k? 1. . (i),’
or ..

i
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‘.,

(6)

‘l’hee
trans

x?res
for file

sion on the lef
d into

t- hand side is coilveniently

2
1

,4
-~=k

0 1----—- ——. -———— —-- - ———

(

e~ ‘ ~~

)

k 13
l+-= l––-k~q

eD Qz

s ~(t) 23
—.—-——.--——

6D
(7)(k ‘)

.

It m, ins to replace -j, t 1)y in the expression

4
iand

so that

Hence

Fs (1:1) .———- ——.————
4

fl

H
~-

‘(Z1 k———

J;2)

(8——9.

)1 ta

.--—— -

2
na 1a [

L
COS2 G(kl )

1’

o*
g~

x

5
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y’” (o) = y“”(o).= o;” ‘yn(-L)= y(t) =0

. .. . . . . .
..’

l?igures 6 and 7 show the function “~s(k~) “a =for O and
r“= O.l i and 0,,2 i, respectively. While the zero posi–
tions of .I’#kl) remain the same, the asymptotic positions

are displaced. This is explained by the fact that for the
frequencies given by,the zero positions i -the hub is always
at rest and therefore plays no part no matter how large ‘ r
is, The boundary conditions for the rod are the same. ~ or
the asymptotic positions one boundary condition was y(l)=o.
Actually, however, it is y(t) = r@N. For this reason the

-asymptotic -position must be displaced. ,

Figures 8 to 13 give the function FS(k!) for r = O
0 0and a = O , 15 , 30°, 45°, 60°, 90° for a rati’o

Jh/JfZ = 16. Ti.gures 14 and 15 gi~7e the I?s(kl) function
f or a=60 and r = 0.1 1 and 0.2 1, respectively.

I“t may be seen that for the obliquely set rod the two
functions FS(kl) for a = 0° and a = 90° are superposed.

Since the zero positions remain the same, the various
branches of the curve must crowd together. The more one of
the two i~rincipal vibration directions is turned out of the
torsional vibration plane, the more the corresponding
curves draw together. Xach branch of the Ts (k) curve

again runs, between two as:~mptotes. The corresponding value
of k’ gives for both vibration directions a composite
form of vib~ation such that the bending moment” of the rod
at the blade root is zero in the torsional vibration plane.

The position of the Ys(kl) branches for the vibra-

tion about the chord depends on the ratio
4

/

‘h
“, :.’+1

4
J(O

For J~~)/J~:~) = 16 the above ratio is equal to 2. The

zero positions are therefore at double the ke~ values .

of tb.e vibrations about tb.e small axis : that is, 3.750,
9.388, and so forth. From this it may be seen that for
the ho,~ogeneous prismatic rod fixed at one end, the fun- s
damental vibration about the small axis is followed
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directly %y..the fundamental vibr tions shout the larger
?1axis , provided the ratio J: A7J(7! is smaller than

(4.694/1.875)4 = 39,3., If ~~~ r~~~o is larger it means
that the fundamental vilration about the longe~ ~ fol-
lows only after the first harmonic shout the small~ axis.
“This holds quite generally also for nonhomogeneous rkds
and hence for propellers except that the ratio J% \/J;?\

G(?K1)
\i/]” \b)

and also and H(i~) ane different functions.

With each vibration of the rod there is thus” assocj-
aied such a l?S(kl) branch - that is, since there are
two vilration directions each degree is represented twice.
1~.general, the Is(kt) branch corresponding to the nth
degyee intersects the k I axis at kel and at
4

1

-—-..—L____

‘~z)/J~/) k’ if G(k’) and H(i’) are equal.

The function l?~(kl) is quite independent of the
material constants of the rod. It is valid for all rods
having J(x) and W(X] constant over their length. All
constants of the crankshaft-rod system except for the ratio
r/ 1 and Jh/JfZ are included in the expression for

Ilt(k% This has the advantage that on varying a constant

only one function is varied and the relations are thus
mora clearly scan.

.“

The engine fuzction possesses a zero and, if e~+ o,
an infinity. The zero” - that is, the intersection ‘with
the

.--—
kt axis, gives the natural frequency /_c7~~ of the

torsional componexit system up to the hul. The infinity

J

———z .-
o~ + Qyj

gives the natural frequency c -— of the system:
QD e~v

rotating mass - elasticity - mass of hub. The zero posi–
tion depends olilj~ on the ratio v/<2● !lhe natural frequen—
ties cf the entire system including tha rod ara obtained
fron the relation w = v kla , where the k’ are determined
by the intersections of the two functions TS(k~) and

Elx(kl). The validity of these relations was checked with

the aid of numerous tests with rectangular saction iron
rods. Tigure 16 shows, attached to the shaft, the huh in
which two prismatic homogeneous rods may be inserted at
differant settings. From the ~S(k’)–YM(kt) diagram it
is clear that through the coupling the natural frac~uencies
(zeros of Flq(kl) and ~S(kl)) of the component systems
are displaced.
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There ~~ill now he determined the natural frequencies
of a single-nass system with rectan~ular rod the constants
of which correspond to those of a 700-ho~seyower radial
engiv.e. Let

OD = 10 crnkgs2; Smt2 = 1000 cmkgs2; !2 = 630s–1

(n = 6000 rpm) and in the first case eN = O, and in the

~ec~nd case 6i~ = 8D.

For each case the functions ~s a“nd Fiti are drawn
for a blade which corresponds in its dimensions to a large
propeller. oIn the function FS(kl), Jh/ Jf 1 = 16; r = O;
and a=Go. In the function FM, V = 40. The first

case on figure 17 corresponds to the relations obtaining
for an adjustable pitch prop~~ller or for a noncontrollable
pitch. l~;oodpropeller. The second case on figure 18 cor–
r?spo:lis to that of controllable pitch propeller for which
ti:e iKiSS moment of inertia of the hub may have the same
value as that of the engine, There is thus obtained: .
——

nl n=
(r~;) ‘4

n5

Case 1 1530 5100 8400 22,600

Case 2 1530 61C0 8400 lCJ,ao~ 23,600
—-— —.

For com-oarison there are given the corresponding values
that were obtained for a B!(’T–Electron–controllable–pitch
proneller on a test stand s~milar to that of fig~re 2:
f)D was equal to 11.7 kgcms , e~~= 6 to 9 cmkgs
(estimated), G? = 550s-1.

—
nl n2-

(r~~n) ‘4——.
2000 5600 6100 10,800... . .. — —.—

The rod in each case possessed the vibration form obtained
by substituting the value ~1 given by the point of inter–
section in the function y(x). It can only nossess its
natural vibration form for one end held fixed if a node
occurs in the hub and the hub is thus at rest. This is
possible for the following values of kl:

Lrl i= 1,

The point

is then’ always

875, 4.694, 7.855, and so forth.

of intersection of FM with the lrf axis

simultaneously the intersection of an 3’s

branch with the -.17● axis. It is Seen that in these
cases the frequency of the entire system cannot vary if
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the blades are rotated in. the hub - that is, their pitch
is varie cl. In all other cases the natural frequency of
the entire system varies. It can only possess the form
of vibration corresponding to the condition y!!(t) = o
if the infinity of. the FS(kl) function coincides with

one of the FM(kt) function. All the vi%ratiori: over both
axes can always %e excited as long as neither of the two
~Jrincipa?. vibration planes lies in the torsional vi%ration
)~c~ne. That the previous conclusions hold similarl~- for
yopellers is shown hy fi~ure 19, which gives the varia-
~ion with pitch angle of the first three natural frequen—
ties of a. si~lgle—r.lasss~stem with rectangular section rod,
a 3WM controllable pitch propeller, and an As-8 adjustable
7Yo-~eller.

.

I’igures 17 and 18 show further that if tiie intersec–
tion @f y

s with the u branch of 1?~,~ lies above the
k! “a+xls, it means th:lt in the” torsional–vibrat ing system
tliere are u --1 nodes and in the “olade there are v
no[l(.~~:herc v is the degree CI’ the intersected I?s
branch. If the” pbint of intersection lies below the jc-1

axis ~;,ere are u nodes in the torsional vibrating system
and v — 1 in the blade.

Tor ~3ractical purposes a ki~owlod~;e of the first three
frcquoncics is of particular importance, since the others
can, only be excited .OY the high harmonics of the torsional–
force oscill.ogracl which are very small. For this reason,
it is sufficient to consider these first three frequencies
alone. ~n].;~two kiilds of ‘propellers arc possible: namely,
these to tihich the fumkcmwntal vibration Shout the tih.ord,on
account of the thin hub shaft, lies below the first har–
monic- about the smaller axis and those for which the re—
vprsc is tho case. .Fil”st , case 1 is considered. In fig–
Ul”e 20, the first three branches cf the Ys(kl) function

for the prismatic–homogeneous rod are drawn for a ratio
Jh/Jfz = 15 and a = 60°, r =. 0. The corresponding r~~(kl)
f71nction for a = ~GO is also shown dotted. The heavy
COntiilLIOUS curves are t?.ree FM(kl) functions . The first

represeilts the cas~ where tbe na,tural frequency of the
tor~iollall>- vibrating systel; is lower than that of the
fundamental vi-oration about the chord of the rod fixed at
one e;ld. ‘The second function gives the case where it is
equal to the first harmonic a~out the small axis, aild the
third the case where it is greater than that of the first
h:~rmoilics *
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There now aris,es”’the question as to which of the’
three frequencie-s, given .by the points- of intersection’
corresponds to the so-called crankshaft natural frequency
for the case of a rigid propeller - t’hat is, the frequen-cy
ca:using the strong deflections recorded hy the torsiograph
of the torsionally vibrating system. It is clear that
only one intersection comes into consideration: “namely,
that which lies very near the intersection of the l’iq(k~)
curve with the kt axis. This. j?act, h’owever, is not b~
itself’ sufficient ; since this vibration must also exist
for the propeller setting CL = 90°. The propeller is then
most rigid i.n the direction of the torsional vibration and
the vibrations about the small axis are,as it were, un–

. Coupled. The case now corresponds” to the rigid propeller.

‘lhe case where the prismatic rod is ass”umed as ri’gid
vith re~

$
rd to vibration about the chord is that for

which (t) =CD. In this case the rod function Fs(kl)
. .

is yrac~ically of tb.e sane sha~e as the dotted curve on
figure 20 with the exception, however , that it al-ways re-
mains below the the k I axis which it intersects at
infiniuy – that is, that the k f axis is an asymptote.”
It follows from this that the point of intersection cor-
responding to the torsional vibration also occurs for”
a = g~o and the branch of the rod function intersected
‘Dy the engine function J?N(kt) must pass continuously

into the dotted curve with increasing a. In figure 20,
the so–called crankshaft natural frequency is given in
the first two cases ‘oy the second point of intersection
and in the third case by the third poiilt of intersection.

Figure 21 shows the case where the frequency of”~he
fundamental vibration about the chord is ‘greater” than- ‘
that of the ‘first harmonic about the ~mall axis. The
ratio Jh/ Jf t.= 81 and again a’= 60 , r = O. From what

was said pte~i6uslyi there “issimilarly obtained the so-called
crankshaft natural frequency for the first. ~M(k~) func–

tion from the second point of intersection~and, for the
second and third functions, from the third point of inter-
section.

.,
Of the t’hree Frequencies- consi.ie~-edj one is thus

uniquely determined as the ilatu.ra~..fre.quencyof the crank–
s.haft ,<Jithelastic ~~op”eller an-d it ~S seen that the other
tWO pOiiltS of interjection lie ver”y close to the kt .Val—
‘~es for the fundamental ‘vibration and f’irst harmonic about
the small axis of the rod fixed at one end. Trom all this,
it follows that for high angles & the three possible

e’
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natural frequencies of the system lie very close to the
natural frequencies of the two component rod and crank-
-shaft systems when the rod is fixed at the hub. One of
the natural frequencies of the system may therefore be
denoted as the crankshaft torsional vibration nD and

the two others a% fundamental and first harmonic of the
rod or propeller n~ and n~. This explains the nota-

‘tion of table 1 and the slight variation in the frequency
in the second column as compared with the variations of
the first and third.

It is seen on figures 17, 18, 20,. and 21 that the
first harmonic is least shifted by the cou~ling. The
torsional vibration of the system can undergo a. relatively
large displacement. It may be seen from the expression
for the engine function (equation (7))that for equal ratio
v/n it intersects the k’ axis at a larger angle the
smaller the rotation mass 6D. It follows from this that

for a given propeller and given ratio v~!a the natural
crankshaft frequency of the entire system deviates more
frem the natural frequency of the torsionally vibrating
system the greater the rotating mass OD. In the case

of the rigid assumed propeller, the corresponding expres-
sion for the torsional natural frequency is

In practice only propellers generally are used for
which the relations are such as are expressed by the func-
tion Ts(kl) in figure 20. Fundamentally, the first and

second engine functions hold for the case when the first
harmonic about the small axis is greater than the torsional
vibration and the third engine function for the case given
in table 1 for the second and fifth propeller, where the
first harmonic of the small axis is lower than the tor-
sional vibration of the system.

It, is also seen now how the torsional vibrqtion curve
of figure 1 is possible. One maximum arises from the
crankshaft vibration, the other from the first harmonic.
Thus, the explanation, that only by the coincidence of the
frequency of the crankshaft torsional vibration with the
first harmonic of the-propeller does the first one split
into two coupling frequencies similar to the resonance pen-
dulum, is untenable. These two resonance positio~.s, ac-
cording to the foregoing, are alway% IEIT&S@’IUb.Why Suijh

b
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characteristic is so rarely measur,ed, and why the vibra—
tion form of the’ propeller for the second and third

.
frequencies of table .1-may be similar ,will be shown later,
Furthermore , the torsional vibration frequency in adjust–
ing the blade to high pitch angles must drop because the
blade is then set more and more with the wide side in the
torsioilal vibration direction and thus becomes less rigid.
In order to see this, consider figure ’20. High pitch “
means here that CL->o. For the engine function III and
II there actually is obtained ‘a lowering of the torsional
vibration frequency. Stmilarly, for the engine function I
in the case drawn where the natural frequency ~ of the
torsionally vi”nrating system is greater than that of the
blade about the chord (Ice’ = 3.750). If the engine

function I, ho~rever, would cut the k] axis ahead of
~e ! = 3.750 the torsional vibration frequen-cy would rise

in setting the blade to a high ‘pitch angle, according to
the rule estal)lished here, that all natural frequencies
of the entire system with increasing uncoupling of the
torsional with the flexural vibrations are displaced to-
ward the natural frequency of the blade vibration which
is uncoupled. (Sen fig. 19, As-8 propeller. )

It will now be shown further how the solution (6)
goes over into that for the rigid rod as V approaches
infinity. This does not show up in the Flt(kt) ‘%0 FS(k?)
dia~rams. The greater the Value of V the steeper the
function r~~(kt) for constant n, and its point of inter–
section with the kl axis lies always more to the left
at small k! values . For the rigid rod (v = ~) it would.——_
lie at k! = d w/v = O and the natural frequencies would
assume the indeterminate form w = O X co although w
obvious],y can still possess also a finite value. The
limit must.therefore be obtained from the formulas. For
this purpose the solution (6) is written

In this way, in the expression on the right , only k!
occurs and on the left, only the product V k@, which may
be set equal to w. There is then obtained

I,,.-,,-,- —--, ,,,,,, , . —. ..—.-—-——, .——— - .. .- - . ..-
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and. settin~ for simplification, m =, 0, r = O - .
.. .

,. . .
~ 1#’”

ILJkq !$+3 ., ’-----––_..________T__L ________
.
Sinh !cI coskl - Cosh kl sin kl-,

When O approaches infinity kl will a’pproach zero, and
it is only ~ecessary to in~-estigate the expression for tke
rod function, ‘The’lat,ter is indeterminate. If the dcli~~]-
inator , however , is expanded into a series , then

——-.-——-———--- --—-- -—————--— ...——-———..—..—_ ___—— ______ _____,,

(
3

k! – –2–J:t __4_.k 15+. ● m\_
3 5

)( )
k!+_2_k I __4_]cl _ .. ‘

~: ~J 3! ‘ 5!

and for ],cl= o , the value of the fraction ‘oecorfiesequal
to –3. ‘The solution for V =, m then hec ones

I-n solving for u.),the following ~quati,on is then obtained

The expression in the first parentheses is no other ,
however , than the mass noifientbf inertia – referred to the
shaft — of a “propeller 1’co:lsisting. of a prismatic infi–
nitel~- rigid rod and may he set equal to 8L. Then

eL (w’ - ff)= f++? -, ,
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SOLUTION FOR NOitHOMOGENEOUS RODS

Having discussed the prismatic homogeneous rod,
there will now be investigated how far the computation
may be carried through for the nonhomogeneous rod.
Start from equation (3) and write

The difficulty of solution of this differential equation
increases with the complexity of the functions P(x) and
Q(x). Tor this reason there will be set for P(x) a~d
Q(x) the sirplest, yet still reasonable exponential ex–

pressions,
() ()

P(x) = ~ p and Q(x) = ~ ‘. Dividing the

efl_uation by P(x) arid scttirig p+ c = q, there is ob–
tained

In the above differential equation p can take any values
from -~ to +w . Tor i-m > 6 ~ -4 ft is a Tuchs–type
differ{;ntial equation and as such is integrable by means
of series. Solutions d.efiued at X=o are obtained only
if t~le i coefficient in a differential equation of the
form

Iv

y(x)
+Rl ylfl

(x)
+ Rz Y~x) + R3 Y/x) + R4 Y(x) = O

has a pole of, at most, the itl~ order. If CC–4 then
x= o is a so–called essentially singular point, and for
this case there is as yet no complete theory. (See L.
Bierberbach, Differentialgleichungn , pp. 195-196. ) At
any rate , no solutions can then be found in the form of
conver~ent series. Thus , the cases are restricted to
m > c ~ -4. Since the case C = –4 is solved by setting
y(x) = Xp the method of series development starts with
c = -3 ● Since only in the cases with _~’~> = —3 not all
four particular integrals involve logarithms, of which
use cannot be made, the solution of the differential
equation is restricted for +CO > p> -m and m =’ c ~ -3.
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m

setting y(x) = Y 3,1 ZP+’V) tkereis”obtained, st-nze

“;the “characteristic equation”a. is not to vanish,

Tiie 2“oove equation l~as the fcur roots
o
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~i~;~re 25 ~hows, +jh~’ Ts(kt) curre f or the fundame-n-
. . . tal, vi-~ration CL = O and r = 0. Although five terms of

the power series were taken, it was. not possible to com-
pute exactly the second zero position; because for higher
values of. k I the COmpUt:Lti OiI becomes too inaccurate on
account ,of the rap,idly increasing large numbers . The
value must lie between 5.2 and 5,4. T,he first zero -posi-
tion is obtained as 2.67. The corresponding experimental
sdtup is shown on fi-gure 26.

The first zero position f’o’r,nonhom’ogeneous rods can
.

easily be found by the Hay;eigh metho’d,
b

[

a

2<E J(t)w
p(~) qx) ax

= -————— —,—-__-____-— -—-—

~(l) ! Q(x) Y(x)’ dx

y(x) = X-l+ ax3 + bxa + CX+ d

With the boundary conditions

-Ylll(()) = ~rll(()) = (-J;Yl(z) = y(z) = ()

Y(:i) becomes y(x) =x4- 413s+3t 4. There are thus
o}t:% ined the first zeros for the following five cases:

. ... —

q P

,: HI-
c ~1

e (p%wlt )————..—.—_—_—_ ——-..—————————.-- .. ..-.—— —————————----

0 -. 0’ 0 1,880 0.27
1’ 1 0 2.69 .75
1 2- -1 2,59 ‘

‘1 4 –3 2,4s
1 6 -5 2.31
————— ————— — .—-— —-—— ——————..———————— -—-———-—————

It is seen: that the first zero for ‘propellers Dust
lie iri the neighborhood of 2. By the Ra~le~gh method it
is.also possible to approximate very closely the functions
w(x) and J(x) by sui~ble polynomials of x instead of
the simple expression -, or xq so that tlie first zeros
can al?llostaccurately be obtained, as the pos’itive error
sholrs for 1,880 as compared with the accurate error value
1.875. Unfortunately, nothing has been gained t~ereby



—

’22 .NACA Technical .Memorandum No. “XG51

for the problem ‘under coiisidwation; since from all that
has been said it is ‘net practically possible to compute
beforehand the natural frequencies of a torsional-f lexural
system as was done for the homogeneous prismatic rod.
The only ”magnitudes that can he accurately determined are
6D and c; e~ and r/ 1 are no longer uniquely deter--

mined. For the longer and shorter axis O.{?) and til(x) ,

respectively, can be found only approximately, and the
function r#) can %e ~ractically computed only for the
fundamental vibration, ;which is not of great interest.
There is the further difficulty that the angle a on ac-
count of the twist cannot be accurately defined. 1?or
relations such as those holding for engine function I on
figure 20, the angle a = O also can be defined as that
for which the frequency of’ the first harmonic is a mini-
mum and for the fundamental vibration a maximum. A cor–
responding consideration holds also for the still higher
harmonics. This angle in practice, however, deviates
from zero,as tests have shown (see p.26) and has differ-
ent values for the different vibrations. The deviation
from zero may be as much as 30 . This necessarily leads
to the direct measurement of the natural frequency of
the crankshaft-propeller systen. The test setup, however,
must permit a variation of the elasticity and the moment
of inertia of the rotating mass in order that the cor-
responding engine may be simuIated with sufficient accu-
racy,

MEASUREIjEITT OF A PROPELLER

In order to be able to satisfy the condition of ac-
curate simulation of the engine under consideration, the
test setup was constructed as shown in figures 27a,b. A
rotating mass to which is screwed the unbalanced exciter
weight is displaceable on a steel shaft 120 centimeters
long and can be held in place by a pressure seat. The
mass moment of inertia can be varied ‘Dy screwing on iron
plates, each of 1.1 kgcms2moment of inertia in steys of
2.4 to 15 kgcmsa. With the aid of this apparatus; it is
possi%le to determine, experirientally, the unknown func–
tion I’s for the range of practical importance. There
is first determined the value V for the’ propeller
under consideration. For this purpose there is taken in
the neighborhood ‘of the blade root a cross section, which
is typical of the remainder of the blade (fig. 28).

—-,,. , , .- .,-..-..---- ...!.... I -.-, .-,-. .!. !!! . ! ! . ! .!- —,, -,., . . ,—.
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There is i~ow dra~ifithrough the k? axis’ a fanily of
. ~~~(k 1) ‘‘curves” by va=ryi-mg -&D .,0and. c. .Ea.ch..time.the

corresponding value of ep Land c is adjusted on the

test stand and the frequency w measured. Then, for

f
each k!- = ~ on the corresponding FM(kl) curve a

v
point is marked. The line joining all these points gives
a portion of the unknown propeller function FS(kl) not

not computable in advance .

This yrocedure was carried out for a Ju PAK–dural
adjustable propeller for the 3MW “Hornet!! engine. The
blade length was chosen 1 = 110 centimeters and the
llade width was then obtained as b = 25 centimeters
and %lade thickness h = 5.7 centimeters. The ratio
Jh/ Jf 1 at the position x = 1 was 16.3, The;mag@&m&e
3 was ~omputed to ~e approximately 70,and the value
s W(T)Z=, 743 kgcms”. The mass moment of inertia of the

hu% “with blade root was 4.93; r/1
0.15.

was approximately
On figure 29 the various engine fuilctions

1 4900 ~14- —-——

(k!) = ~D3 rr 1

%
——... -.—.- .--.———-—-—— ----- ___

( )

~+ 4.93 ~ _ 4900 ~14 k13——-

‘D
(22 ‘

are denoted %y the letters a to “ k. On table 2 the
values of e~ and ~z are given for each of the 1(3

~ b{(k’) functions which were adjusted on the test stand.

On figure 2“9 the, similarity may be seen of the propeller
functions deterrniued by this test with those of the homo–
~eneous prismatic rod on figure 14. It is to be noted
that in the latter figure ‘the scale of abscissas was
smaller. For the Ju PAK propeller the different harmonics
follow each other more rapidly than for the homogeneous
rod. There were obtained the values nl = 2800, n2 = 7300,
n~ = 13,200 rpm. For the BMW Electron controllable pro-
peller used for comparison, there was obtained nl = 2000,
n2 = 6100, n~ = 10,800 rpm. .

The test showed that the first harmonic is practically
independent of the torsionally vibrating system. For this
reason it might be computed in advance if it were suffi-
cient to compute the frequency of the blade fixed at the
root , as is possible with the aid of energy methods (ref—
erences 4 and 5). The assumed rigid end condition at the

. .....-- ...-.----. —--. . .... . . .. .... . ,,,....,..,,,.,.,, , ..... ... --- --— .——
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root, .howeve”r, d~es not actually occur and the degree of
f ixing , wh-ich can .De @.iffer.e”nt f or “each hu% , g.reat~y .,af-
fects the frequency. The effect’ of the twist which tends
to i:~crease the frequency must also le taken into ‘account
(reference 8) : I?”orthis ~eason, the experimental me”thod
is preferred, ,whick enables the simple and accurats deter-
mination of the ‘r,equired frequ.enby, J ,’ :

In’this eonnectio.n,-there will also’he considered’the
factors that affect the first characteristic value ket

of propellers. For the Ju PAK propellers for a value of
v Qf ’70, this,value of ket lies at 2.06. For the pre-

viously mentioned ‘BNW propeller for’s value of U of 50,
it lies at 2.05; and for the As-8 propeller of figure 19
for v = 70, “it’ lies at 1.93. The characteristic values
ke I for known’n&tural frequency depend on the choice of
the nagnituae V- and tb.e latter again on the choice of

the position x = 1. The change in the value of v is
very marked only where the 31ade passes over into the
cyliilduical shaft, where 1? increases yery strongly. At
a distance of 10 centimeters along the blade, however , it
is already only slightly affected ‘OY a chal:ge in 1. .The
blade naturally can be considered also as extending to
the poimt- of .attachmenfi. This , in the case of the Ju PAK
propeller, would lead to a val-.zeof v=88 and the ke 1

values all would be. si~aller 3Y 11.2 percent. Tb.e I’s(kt)

function then also must change a little but, on the whole,
will be very si:(,ilar. ~he ~:I values would then depend,
however , only ,on the form of the section at the position
of &ttacilLOent.- that is , with a thicker shaft the .%lade

‘would nave much lower characteristic values, This ,
however , is physically unreasonable. Hence the shaft must
be coilsidered as ‘DelOilLing to the fixation and not as a
part of the elas’cicit;~ determining the natural freque~cies
of the blade. l?or this reason the ,FS(k~) function for
the Ju YAK ~ropeller was determined for the value v = ’70.

‘ ZFI?ECT Ol? T.HX CdUTRIFUGA.L F.ORCll

. .

A test setup of the kind descriled alove gives only
the na~uz’al frequencies cf the system for the case of a
‘:uonrota”tingpr,opell~-r. There also must; l)e taken into
a,-c~,ount , therefore, t~e increase in the stiffness and
he,nce ‘the natural frequency of the blade as a res’.~ltof

.“.’ .,.
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the centrifugal force in rotation. ‘The increase in the
.–- natural frequencies by the centrifugal force of propeller

blade fixed at the “root is given by Liebers (references
4 aad 12) as follows: If 0 is the natural fi-eq,uency
for the -propeller at rest and Wu the nuiflber.of rota–
tions, then for the first three natural frequencies there
hold the relations’:

WI= = G1 2 + 1.45 WU2, fundamental vibration

W22 = m2~ -1-4.40 WU2, first harmonic

LU3
2

= zz~ + 9.20 f.u32, second harmonic

It is thus a matter of simply adding to the test values
obtaiiled, if the latter are practically identical with—
W1 and W2 as can be shown-to be the case with the
above described apparatus . On account of the large set-
tiilg an?;les of tile propellers there cannot occur a greater
deviation of the frec]uencies of the fundamental and first
harmonic froI: ml aad ~2, respectivel:~.

Since the value of V remains the same under the
action of tile ceiltrif-~gal force, the engine function does
not cha;~ge , but the zero positions of the Ys(kt) branches

lie at higher values of k’. For a speed of n = 1910 -
that is , wu = 2C0, . the increrneuts are

WI 2
– 2 + 58,0s0= WI

2
LU2 – 2 + 176,000= W2

—
If, on the average, wl is taken to be 200 and 600,
respectively,( chord) and Z2 = 700, then wl = 313 and
647, respectively, (chord) and w, = 826. This is 56.5
and 7.85 percent for WI and 16.6 percent for W2 . Ex–
pressed in terms of kl the increase in the fundamental
vibration over the chord is only 25.4 compared to 24.5
which is 3.6’7 percent. The intersection of the I?s(k?)
function ’corresponding to k! = 3,75”0 in figure”2”0 and
k! = 5.625 in fi~ure 21 is shifted to the right by about
4 percent. It is easily seen that the frequency of the
torsional natural vibration of the entire system is
practically not shifted.
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SULUT ION I?OR.A S31VER.4L--MJlSS SYSTEM

There is still to %e investigated how the natural
frequeilcies are determined for an in–line engine which
can he represented only by a several-mass system.

Let the system consist of 6 masses – corresponding
in their dimensions approxi~ately to the BMW-IV engine.

9 1–6 = 0.5 kgcmsa

c~_5 = 4 x 106 kgcm/rad

C6 = 2.66 X 106 kgcm/rad

The first three natural frequencies of this system then
lie at

(2= = 635 Q2 = 1895 n3 . 31OC)

In order to simplify the computation, somewhat, each pair
of,masses is combined into one ‘(fig. 30) so that

0
~

1–3 = 1 kgcms

C,3= 2X1O 6 kgcm/rad.—

The first three natural frequencies are then computed from
the equation

,. 6 4 12 2
107XUJ

le.
cJ,– + 24 X 10 XW -’8 X 10 = O -. .

.,

!sl = 630 r?ompared with 635 - 0.8 percent

f22 = 1750 cor,paredwith 1895 - 7’.7 per”cent

‘ 33 = ‘2550 compared with <100 - 17.8 percent

This deviation is of no significance for our ‘investigation
and is given only as a matter of interest. NOW consider
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the three-mass system. The other magnitudes in the l?l,I(kl)
.-. —. -

function are assumed to be

v= 30

}

which values hold- for very large

s ‘(l) ‘3 = 1200
propellers.

The fui~ction FM(kl) will now be computed for two

cases. 1,1 the first case e~ = O and in the second case
0~~ = Z’Oi (fig. :1). It can be given, in general, for an
ar’bi.trory i~umber of masses if the method of Tone is used.
TF~is method serves to co,n~oute the natural freq,uendies of
a several-iflass system. If 1’ denotes the moment and a
the deflection of aily mass, then

~JIi,i+-1 = ],1i-l,i -GiW2ai

1.1.l,i+l
ai+l ‘ ai + -——-. -

c.l,i+l

Thus st:rtiilg at the end mass

al=l

el U)2
a2=l - -———-

CIQ

M23 = M12 -e2w2a2, and so forth,

if , however , all ai are expressed by al and all
“!4”z ,’i+l- by M12 expressions “of ter’ms w’ith increasing power

of the natural frequency are o’btaiiled
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elw2
az = 1 -------

C12

4 ele~
1123 = - w2(e1 + ea) + w —- —-—

C12

1131=-––––––––”- –-–––---– –-–

The function for an n mass system may theil le written
as

where ~a = O gives the zeros aild Mn n+l = O the in=-
n

finities of the functions. There are ~btaiiled the values:

Case I First zero c1 = 630 k! = 4.58
l?irst infinity w = 1420 k 1 = 6.88
Second zero ~2 = 1’750 .K = 7.651- 1

Secoild infinity u) = 2450 k! = 9*G5
T~lird zero o“3 = 2550 kl = 9.23

Case II First zero C21 = 630 k! = 4.58 “
First infinity k I = 5.32
Second zero rJ; : 1;:; k! = 7.65

Second infinity w = 1845 kl = 7.85
Third zero (23 = 2550 k! = ~.23
Third infinity w= 2580 k! = 9.30 “ ‘

Figures 32 and 33 show the variation of the “F~,l function

(continuous curve) . The three masses were now combined
into one and the elasticity so chosen that the natural

.-. .,.P ,,.,.., J. .,---.,.. .!.:.. ,> T,, .L. .
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frequency of this torsiofially vibrating system was equal.
t0 .thc-f.ir.st.:~fthe t~,~.e.e.-rn.a.sss.ys$em:.@> .

c = 3,a12

The substitute function for the fii?st case is then obtained

.;. ,., .,,,
.1

‘-400 ‘ :3
T~I(kl) = ;Tz (1 - 2.27 X 10 k14)

,.

and for the second case

‘’400 1Flu(kq = --~ - 2.27 X 10-3 k14----- -.---—..---—
k12_ 2,27 X 10-3 k14

“(qp) = 4~58; k ‘,(F*~=uJ)= 5’45

,,

Sine’e the substitute functicn first begins to deviate from
that of the three-mass function only at a rather great
distance from the k t axis , where the Fs curve runs
practically vertical, no difference in the values of kr
Civen .h~rthe intersections can occur up to about k’ = 6.
Since the first zero is at 4.58, it means that the equiv—
alent system correctly gives another natural frequency,
which lies- higher thail the first natural frequency of the

2 2-

System (j’l ~y. ~––~--~+- x .100 = 71.5 percent - or
4.5,8

in’round- nv.mbers - ’70 percent. Thus- the higher, frequency
should be not” m.uch gr’aater than ,

.
!,,,,. \

,, n’= 6’)800” if nD =’ 4.,000 ,

n = 10,200 If n~ = 6,000
n= 17,000 if nD = 10,000

;I-fJ>*tLheAdifferenceJt~ greate’r then, “havi-ngdetermined the
TS(kt) function on the test sta;nd, the engine function
is accurately computed or, at least, replaced by the one=,
tl,ro–,or three-mass system and then Lfladeto intersect
with the ,FS(kf), function..
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This cone’lude”s’the investigation of the problem o-f
the coupling of the flexural propeller vibr-ations with
the torsional crankshaft vibrations and the determination
of the critical engine speeds. In the following there
will be further considered the fundamental stress problems.

THE VIBRATION STRESSES IN THE SYSTZM

A. Theoretical Considerations

In the function Fs (k I) zeros are followed by in-

finities. I’or the vibrations corresponding to the latter
there hold simultaneously the three boundary conditions

y’” (o) = o, y“(o) = o, ,y(l) = r Ox?

m,.ne fourth condition, corresponding to the zeros, is
y!(z) = o. For our system this means that the hub is at
rest anti the greatest bending w.oment is at the blade root.
In these cases the propeller blade vibrates mainly ab”out
one of the two principal moment–of–inertia axes of the
cross sectioil. Without twist a rod or propeller %lade
would vibrate a“oout ore of the princi~a’1 axes ‘only. The
eiltire system vibrates with the frequency u) = ~, the
rotating mss undergoes relatively the greatest displace—
ments and the component of the largest bending moment of
the rod in the torsio~lal vibratioil plane a’mounts to

The torsional component-system is in resonance. As a re-
sult of the twist torsional vibrations of the hades may
be e:;cited, hut these vibrations will not here be con-
sidered. It may be remarked in passing that they have,
up to the present, been very rarely observed. At the fre–
q,uency corresponding to k! = 2.97 in figure 29, the
propeller blade would thus vibrate in its fundamental mode
about the chord and at the frequency corresponding to
1;t = 3.3 in its first harmonic about the small axis. To
the right and left of each zero of the, lF3(kl) function
the i~ornent”at the blade root. again decreases, the maximum
moment however no longer lying in the direction of, one of
one of tfie principal moment-of-inertia axes of the cross
secti’on, s~nce a moment now arises about the other axis.
In addition to the frequencies corresponding to the zeros,
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vibration. of the rod occur simultaneously over the two
.aiZC?S.ai~d the two, moments- in these directions together
give a resultant moment 1,1 which makes an angle P
with the torsional vibration plane. (fig. 34). This re–
sultant L~Olllentmust be decomposed into two perpendicular
components , one of whi’ch,acts as a pure lending moment
MB on the shaft. On account of the symmetry in the case

of several blades,these bending moments balance each
other’ o-tit, but the shaft is dcted on’%y a te~s’ile or com–
pressivq force through which axial vibrations of the
crankshaft may be excited (fi’g. 35). The other-component
MD just balances the torsional vibration moment in the
shaft. It follows that, since the torsiograph measures
only this one component that the moment in the hub is to
bo assumed considerably higher.

Tor tile vibrations of the rod correspondilig to the
infinities the fourth boundary condition is ytl(t) = o.
In this case the %ending moment at the blade root is
equal to zero and the hub is in motion. These vibration
modes can then only arise if the two infinities of the
r@r) and FM(ki) functions coincide. This is possi–

ble if the mass moment of inertia of the hub is not equal
to zero. The frequency of this vibration is given by

/

J“
eD + 6~

w= c –——--—––
9D 6N

and the an~ular displacement of the hub has its maximum
value . The maximum occurriilg bending mo~fientthen lies
within the propeller blade~ All the blades would then
be , as it were, in equilibrium; and the rotating mass
would only have to balance the moment due to the vibrat–
ing hub. Since

for the displacement of the rotating mass, there is ob-
tained -- “,

.
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.

which therefore decreases for given hub displacement as
tke ~atio, of th&hu3 filassto tlie rotating mass. The’ hub
displacement’, ’,howeveq.,cannot become large, for,,

...,

.,.

On account, of the.setting angle CL, ~h
y (1)

contributes

I?or U = 450,, ,h~most to t-he angle ax” ‘(2)
‘Y~:~; but

‘h (a= 90°) is small compared to
y~l) Y[~j (a = 0°) since

J(t)< also at the blade root is much larger than J?;),

Moreover,
&

must bec’ome smaller the more the resonance–

indicating value of kl , for the prismatic homogeneous rod
here. considered, differs – for example, from k! = 7.853.
Hence DN for the vibrations corresponding to the infinity
positions is small making ‘D also small, since the ratio

ON/QD ‘is gel~erally. smaller than 1. This holds,als,o,
.

approximately for the cases where the point of intersection
Of ??M(kt”) with ??s(2s1) which poir.t de:srmines hhe res-

onance frequency @f’t-he sysie?o lies far from the k’ axis
and there is a node in the shaft. These points of inter–
section always lie below the k! axis.

The displacements of the rotatins mass for the vi-

brations,the correspondin~ point of intersection of which
. lies above tlie kt axis , are mu’ch greater than ~~ and

there is no node in the shaft.

The position of the point Of inte~s@ction of the
engine and rod functions determines not o’filYa resonant@
frequency of the crankshaft–propeller system but its dis–
tance from the k 1 axis is at the same time a measure of
the :Ilomentarising in the hub,because the magnitude

3M(H) = T@l) represents the l:eci’procal value of the

component of the moment at the hub divided by

which acts in the plane of rotation or the propeller disk.

-- -----------..----—--- - ..... . . .
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Hci~ce, the closer the point of intersection lies to the
k! a:iis the larger is the moment. This is seen with the ●

aid of figure 36, where the ~s function is plotted for

a= 00 and a = 60° and, furthermore, for a = 60°
for the case that the blade is hinge-connected about the
chord aild hence a momeilt on the shaft can be transmitted
only over the smaller axis (dotted). In the figurd! are
also given three engine curves, one of which represents
the case that the natural frequeilcy of the torsionally
vibrating system is equal to the first harmonic of the
blade a’oout the small axis. This case will be consid–
ered first (curve II): For the angle a = O the blade
vibrates about the small taxis in the toi-sional vibration
plane of the hub. The moment in the hub is obtai.led.as
infinitely large. Sirlce in the actual case there is
danpin~ a finite deflection wi].1 be oltained for the rod
and tlic iorsioilalljr vibrating mass . Let the defle~tion
of the mass be ‘DO* The interlsity of the rod vibration

OilCh@,i!&iilg the an~le m cannot increase , therefore, for
tll~ case of constant excitation. For any angle the nat–
ural frequency of’ the system does not vary, since the
joint of “i:lt,ersectio]~which deter!~,ines this frequency re–
mains the s3me . There is also, therefore, no change in
the mode of ~;ibration of the rod about the small axis and
tlie mo:!lentin the blade root. In the torsional vibration
plane , however , a c0i71p0nent of the molflen’tis still effec–
tive and hence the balance moment of the torsionally
vibratin~ mass 8D W2 @Da must decrease, Since e~ and

w are co;~stant

,,
!lhe case is otherwise for engine curve I. With the

blade hin~ed about the chord there is a chan~e not only
in the frequeilcy and hence the Jfiod.eof vibration of the
%lade but alSO the ?LiStanCe of the new point of intersec-
tion froii] the k’ axis is greater aild the moment there-
fore smaller (fig. 37). The deflection OD of the

torsionally vibrating mass therefore decreases faster
than as Cos a,’”.In this. case. the angular deflection at
t,h,ehub is ilot equal to zero. ~rolo equation (4) there
follows the relc~tion

:,
,$, ,.

‘D = %

---- ..

.

1 ,-
—————-

.’
pg

Q

——.. .- .. ——..-—
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>. ~so that. for ‘the-angle u = O
. --- ..”

. . .,,.
1’ ‘

‘D ~
= @N ——.— --,,

!. 0 1 - :+:’
Q

and for the an-gle. a

or

q) = @N 1---——
a

al
~a2

- -——

c12

The ratio ONa/@No is a function of a, It may be de–

termined as follows. The formula must also hold if U.).

approaches O – that is, for the case first considered.
~1’or that case there was obtained

The fraction

& - LU02—-—-——

Q2 - L#

approaches 1, if W. approaches Q. It follows that

ONa/@No approaches cos a. As may be seen from figure 36,

the moioent in the hub in the case of fixed end conditions
decreases still more than for hinged end conditions. This
not only shows up in the expression for ‘Da by the de-

crease in the fraction but also in the fact that the ratio
qlTa/@No .,always remains below cos a. The reason for this

;h
was,already given alove. The more y (2) falls in the

torsional vibration plane the smaller @ N~ must bec,ome

(fig. 38). The angular deflection ON of the hub thus

decreases more rapidly than as cos a, and hence @D fur–

ther decreases. ~ ““‘ .’
.. ..
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Tigures 39, 40, and 41 show the variation of the
a’n~ular ?Lefl~ction of the rotating mass Of a single-mass
system. f’or’,the case of the rectangular section rod and
for the propeller. The analogy of the propel ler. and rod
is cle=ly. evident as already seen in figure 19, A com–
parison with the latter snows that for the cases where
the frequency was constant or.approximately so, with
.chanqe in the an~le a, the angular deflection of the
rotating mass decreased. in proportion. ‘to Cos a, . In all
other cases the deflection decreases at a greater rate.
The indicated angle is ~nly a relative one in order to
bring out better the analogy with the rectangular rod.
The greatest absolute deflection of the rotating mass
measured in the center was obt,ained at an angle of approx-
imately 15° for the fundamental vibration, 0° for the
first harmonic and 3G0 for the second harmonic.

It should be observed that the above described de-
pendence of the deflection a~~ on the angle a holds only
for cases represented by engine curves I and II. For
cases represented by curve 111 this holds true only for
the fundamcl.tal vibratj.on, but not for the torsional.
vibration and first ,harmonic. For a = O there is then
obtained a greater first harmonic about the s,mall axis
and the second node lies in the blade and not in the
blacle root. With increase ia the angle a this vibra-
tion goes over into the torsional vi3ration, while it is
‘still represented by the point of intersection of engine
curve III with the second branch of the FS(kl) curve.

In the case, therefore, that the torsional vibration is
on the opposed side of, the first harmonic, like the fun-
dalilental vibration of the blade fixed at one end about
the chord, the moment at the hub in t~e torsional vibra-
tion plane decreases’ somewhat with decrease in the a.~gle
a’ lut the angular deflection @D of the rotating mass

and hence also the m~ment transmitted IIy it to the rod,
need not decrease because the motion of the hub can in-

crease through the increase of
,f2

‘(t) ‘n %?” ‘his ‘s
the case for the torsional vibrations represented in fig-
ure 20 by engine functton 111 and on figure 21 by engine
function 1.,

For the first harmonic in the case of engine func-
tion IIZ @D is small although the dependence shown in
figure 38 of the hub deflection on the angle a no longer
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applies ,becaus6 it decreases with “further decrease-in a.
The. i%t’ersected- Ys(ki) curve then deforms into straight
lines a<nd the tioint of intersection trawls furtherup
until for this branch of the.a= o’,’, F5(kt) curve ,~amd

hence als’o the vi’’br.ation, has entirely vanished.

The previoud’ considerations have’’showh in which cases
large- and. sriia,l~l‘“deflections of the rot-sting mass occur.
In spi”te.-of smal.l”deflections the stres’s ‘in the propeller
blade -about the chord m?y %e considerable even for small
Y[y)s’ ,and the t.orsiogram ,on acc’ount of the small mot ton

of the r,ottiting‘mass would not reveal these dangerous
str65sesD’ Since the torsional vibr.atioq systea and par-
titularly” the propeller blades vibrate only wiih damping,
energy must be exy.ended hy the, exciting torque. In con-
sequence , the magnitude of the moment MIJ as well as the

the angle ‘c> where % t is the excitation work, are
involved. In the case of the airplane engine and its
equivalent. single -mass system the excitation is on the
rotating mass~ c = Qq-J. For equal frequency, therefore,

all propeller vibrations will be excited with less inten-
sity the further the point of intersection of the FM(k$)

and Fs(kl) curves is from the k’ axis . The stressing

of the propeller %lade will therefore also become smaller.
Fron these considerations it follows that the fundamen-tal
vibration may be considered less dangerous as compared;
wi,th the torsional vibration and the first harmonic le-
cause conditions in practice are such as represented in
figures 20 “and 21.

‘If still higher than tie first harmonic vibrations
.aur”ecomidered, it is seen that their point of intersec-
tion will always lie below the kf axis , provided the
bass of the hub is small eri’oughso that the frequency

-.

is greater; than the harmonic.-under consideration. Since
the rotating mass deflection for vi~rations the corres~ond-
ing point of intersection of which lies far ‘below the k’
axis -is given bythe relatioa
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this is fa.vorabls. For the. high’er.harinonics “a large huh
mass is less favorable since, “as comparison of figures 17
agd .18 shov,q, their corresponding points of intersection
agai~i lie near the k! axis. There is thus an increase
iv the. fioment,at the hub which in spite of the sL~all
ailgular displacement can be balanced by the inertia Of
the,large hul mass. ‘ .

0

Siice the rbd or propeller blade divides the moment
at the hub into two bendin~ moment components in the prin-
cipal vibration \directions , that yibration will predominate
about each axis having zero position T.@l) = o nearest

to the point of intersection of F#J) acd T?l,I(kt)l

giviilg “the resonance position. Hence , if the torsional
vibration lies in the neighborhood of the first harmonic
the latter will come into evidence. This is the reason
why t;-e mode of vibration of the propeller, as initially
renarked for the torsional natural vibration of the test
model (c,o1.‘2, table 1), was si::lilarto that of the first
harmonic (co1. 3) since, chjefly, the larger motions on
accouilt of the small equatorial moment of inertia are in
evideizce~ In this case for both vibrations the mode of
vibration a::.outthe small axis is very marked and the
blade tip f~ilures that so.~etimes occur in wood propellers
may, jc-dging by the failure location, le caused by the
$irst harmoilic as well as by the torsional vibration. The
more closely together the frequencies lie the greater is
“the mo;~ent due one of the vibration modes that must be
added to the other decreasirlg vibration. The maximum val–
ue of the moment lf~ as a funotion of the angular setting

is then obtained, neglecting the twist of the blade ~ not
‘at the angle ~ = 90Q but for a = 90 - c where the
tange;~t of-this angle is given “Qy the ratio of the two
perpendicular components of ib.e moment (fig. 42).

The components of this moment were computed for the
-prismatic homogeneous rod for the undamped case from the
function l~(kl) and the results plotted iQ figure 43,

the ratios of the comp”ollents ~:h and Mf ~ to the moment

at the IIu% ~tJ) being plotted against k! for,an angle
a = 6G0 w$th Jh/Jfl = 16, and, r = O,

,.
.* .&t the asymptotic positions the torsional moment at

the huh ~.~D IS equal to, zero. 1} may be seen,from the

curves thaliexcept: for the very small .regionsa bout the
reSonance positions of the vibrations about the small
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qxi&”f Qr ke’ = 1.875; 4.694, ‘and $Q -f-orth; the moment in
. . ‘the-:shaft is ,entirely balanc~d by vibrations abo~t the

chord. Thts means in practice that the. propel.ler. blade
%ehaves qui.te.similarly” so that” in” the torsional’ vibration
the” max-imum-rnoment that arises i$ almost entirely in the
direction of the larger axis. This ex’plains the position
of the failure (fig. 44). The se”tting -for the cross sec-
tion at -the blade roQt is about 40° . Since only the- sine
component acts on the torsionai vibrat’io-n system, only
64 perce~it .of t-he moment actually ,arising at the blade
root is dofipu.tedfrom the torsiograph deflection. .

I!. Tests . .

In order-to, obtain a clear picture of the relations
so far considered, mostly from the theoretical viewpoint ,
in determining the F@) function of

the deflections of the Ju PAK propeller (fig. 29); :the
rotating mass and hub were measured with the aid of an
attached mirror which threw an image of an illuminated
s:o:t on a screen. Tor this measurement,, ~owever, only
base”s c to g can le considered because only. for these
cases was the rotating mass of the same magnitude as is
necessary for a proper comparison. In addition the blade
tip deflections of the Ju PAK propeller were directly
measured. Under the heading A~b in talle 3, 10/18, for

example, denotes that the first number is the deflection
of the rotating mass on the-screen in centimeters the
other the.deflection of the llade tip in millimeters , both
being for the first harmonic. AD gives the deflection

for ‘the torsional vibration. The angular deflections of
the hq% were in all cases negligibly small compared to
those of the rotating mass and were therefore not entered.
Besides the cases denoted with the letters which are given
in figure 29, a few further cases were considered in order
that the continuous change in the relations could be more
raadily seen. For greater clarity ‘they were not plotted.
Sinc6 the comparison of the deflections must be carried
out ‘for -bqual. e~oitat ion while the unbalance excitation
increases as the -square of the speed, all deflections are
referred to the excitation for a definite speed. The

- latter. iras chosen,as 7300 rpm, corresponding to kel = 3.39
.

F:rorn...the discussion under section- Solutio’n for the
Homogeneous Rod,’ the,,torsional vi’brati.on frequency for

l:”
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cases a to e lies below and for cases f to k
above the first. harmonic. Since it must ,be concluded
from this that there is a sudden jump from the torsional
vibration to the first harmonic and, conversely, there
will first be explained in what sense in cases e and f
an interchange, ,of the torsional “vibration with the first
harmonic is to be understood. This ‘jump is determined
only by the condition that ,each vibration form has been
defined by means of certain physical properties.

In table 3, the first column, the frequencies and
deflections of c tO g are those which correspond to
the, int~rsection of the various FM(kt) curves with the

F@q branch , which extends from k! = 2.06 to 3.3.

The fl-equency runs from n = 5580 to the limiting value
of 7300 rpm.

The change in the deflections is entirely continu-
ous ● The case e I which was not plotted cor~esponds to
the case that an F~(kl) ‘curve Roes accurately through
the pojnt of intersection of the Y.S(k I) curve with the
~t axis at ~ef =3.3; f’ is a closely neighboring

case which likewise has not been plotted.

The second column of the frequencies and deflections
includes those which correspond to the points of inter—
section of the FIx(kl) curves with the l?~(kl) branch
which e~teilds froi~ k~ = 3.3 to 4.33.

Thus , in all cases which correspond to the same
Fs (1C?) branch , the variation of the deflections with the

frequency is continuous and such a branch gives both the
torsional vibration and any harmonic of the propeller.
Both branches and their corresponding vibrations are, so
to speak, equivalent , It may be considered that one
%ranch transfers the torsional vibration to another if
the latter can give rise to a siallar vibration. This
is only possible where an F1t(k’) curve intersects the

two I?S(kl) branches in such a man”ner that the two vi–

brations +ie most closely together. Case .ei therefore
represents t’he limit for which, according to the discus-
sion under section Soluti’on for the Homogeneous Rod, it
is still possible to speak of the higher natural frequency
of the system as the first harmonic.

,.

~... -. .,,, ,,,,,, “, . .“,, .

..—. —
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Tor tlze individual modes cf vi%ration the following
result is obtained. With the deflections of the rotating
mass kilown,.the first harmonic yrovides a measure of the
me,gnitude of the ~ilouenta,t the hub; since ~iD = 8D 0.)2AO~

fOr COilSta::t 9~ and practically constant u depends

Grlly on the deflectiO~~
-A0“0“ It may ‘De seen that tile

magnitude of the deflection decreases with increasing
distailce of the point of intersection of the F;\~(k’)

cymve ~~iih the Fs(k’) curve from the k’ axis , in

agreel:~ent with the theory, and furtherr,ore that the “olade
tip deflections themselves, and he~ce also the stresses
in the “clade, decrease. That the deflections for tile
vj.~raticus , the point of ip.tersection of which lies above

I-ftile .. axis with increasing distailce of ‘~b-elatter ,
d~~cye:],se,“1-~cTe ra-L~idly than for these the point of int.er–
section of vlilichlies below the axis, is explained by
the prcsencc of a mass mo:flentof inertia of the hub that
is Dch negligible in corl-p~~risonviih that of the rotating
rlass; a,nd ‘D:rthe fact tilat in the first case with increas–
ing distaqc.t~ of the ;30iilt01’ intersection from the :kI

a-:is the s:,aft became ~.ore rigid while in the second case
less ri~id, i’or two ~oints of irLterssction at equal
d.istaizce a-oove and “celow the ;-1-I axis , there then holds
the rel-~,ticn

2
w

.—— <

c?~z
1 and

2
w-—— >1

(-)-2
G

y~ojy ~,his relation it folloTJs that the def’lectisns of
+’-IProtatia~dL-. mass becore eqv-al w:hen ON = O. All this

can :JLSO be up-de~.stoo(j-fr~lfithe fact tl:at in the first’

case tke hub vitirates with tl?e i-otating mss and in the
~ecolld case ag~illSt it. In both cases, however, there
co~res?pcnds %0 a ~;ivellrotating ,nass deflection approx-
iio~:telj-the sari; bla~e tip deflection, cince the mode of
vibrabion of the rod m.usi he approximately the same.
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In the torsional vibration the deflections can no ,
.. - longer serve a=.a...measure for. the moment, because the

frequency continuously changes. Consideration of the ~
ratio of the blade tip deflection to that: of the rotating -
mass shows, however, that on approaching the first har~
monic the latter comes more, into evidenae so that the ~
torsional vibration in case e’ corresponds approximately .
to the first harmonic. in case fl and conversely. . ,

Another important fact obtained from the experiment
is that for propellers of the Ju PAK type where the fun–
damental vibration of the blades about the chord 1 is .
lower than the first harmonic about the small axis the .
blade vibrations set up about the small axis are rela–
tively large if the torsional vibration lies below the
first harmonic and small if it lies above the latter.

Setting up the same table for an untwisted prismatic
rod, the same general results are obtained except for the
condition that the rod, with regard to the shove–menti,oned
property of the “propeller, behave~ in just the reverse
manner prorided that for the rod under consideration; the
fundamenta~ vibration about the c’herd likewise lies lower
than the first harnionic about the small axis. I?ur’ther
investigations on this question revealed a fundamental
difference between rod and propeller blade. On observing
the direction of vibration of the propeller tips it was -
found that as the torsional vibration approaches the first
harmonic the direction rotates in both cases. and that
this occurs in the rod in exactly the opposite sense to
that in the propeller blade. l?igure 45 shows this turning
of the vibration direction of the propeller blade tip.
Trom this direction of vibration the corresponding vibra–
tion modes of. the blade can be immediately derived. !l?his
is shown in figure 46. I?or each case the vibration mode
about the small axis (dotted) and that about the chord
(continuous) are drawn as projections in the torsional
vibration or propeller disk plene.

In the case k!< 3.3 the vibration moment of the
two vi%ratious has the same direction; for kl = 3.3
there is practically no vibration about the chord; and
for .k! >.3i3 the.m.oments about the chord and small axis:
net in opposite direction-s.

I?or the Prismatic untwisted rod the theory requires “
a rotation of the direction of.vibration as shown in fig–
ure 47. YOT the vibretion modes are obtained ffon %hese
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directions such that the co~ilPonents of their moments ~t
the b%ade roots in the torsional vibration plane have the
combined effect shown in figure 43, as was also o?3served.
The same behavior is observed with a prismatic nonhorcoge-
neous rod with constant thickae~s and width decreasing
toward the outer end (x= o) so that the p~rticular
behavior of the propeller blade should be determined by
the t~ist.. Further investi~ations will throw more l~<”rlt
on this, In the same way bet-h stroboscopic observatf O:lS
of the vibration phenomenon and the observed elliptic
paths of each point of the ~roneller blade indicate a
phase shift of the vibratio~ about the chord with res-oect
to that about the small axis.

The difference in the !~agnitude of the deflections
of the.rod and 31ade tips, respectively, about the ‘small
axis for the torsioilal vibrp.tion above the first harmonic
co~~gared to those below is thus explained. Quite ~ener–
all”~, it is true that the motion aboq~t the sr.all axis in
the torsional vibration 5.s then relatively large if the
moment of the vibration ~od.e a-oovt the small axis acts
in the same sense as tkat abol~t the chord (see f’lg. 43).

The results here obtained now make it possible , in
the case of propellers cf the Ju P.4K tyoes, to state the
approximate direction in which. the resultant m~xim.um vibra–
tion moment acts in the blade root during torsional vibra–
t5.orlif the latter falls very closely above or “oelow the
first harmonic. The thin arro”~s in fi~ure 48 give the
direction of the momeut .a-ooutboth axes for the vitrntions
corresponding to kl = 2.97 and 3.3 – that is Idll and M.ft.

Tti.equantitative solution of these problems and de—
termination of the location of t?te maximum stress for the
various vibration modes of tti.esyster~, \7h.tchrequires
many tedious strain rneasuren.ents since the vibrati~ons dep-
end to a large extent on the cross—section s’haue, *,7ill
form the s-~bject of a future investigation of the insti–
tute.

For koth vibrations c~rrespocding to the valu5”
k! =2.97 and 3.3, tke torsion~lly vibrating system. yi–”
br,ates in resonance Il)=n. Fcr ~1 = 2.97’ t-he vi-Dra–
tions about the smail axis are a minimum., and the funds–
n.ental vibration of the blade is about the chord. At
k! =3.3 the vibration about the: chord is a minimum
and the first harrzonic is alout thq small axis,
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In order to show the difference between a flight
,. propeller and a ri~id propeller, a heavy rigid, iro.n plate

of mor.nent of inertia r3L,= 64 kgcms2 was attached to th,e

shaft instead of the propeller and the deflection of the
rotating mass was measured for e“qual resonance frequency.
This means that instead of the propeller function any
other engiile function iiltersects so that the point of
intersection lies directly on the kf axi s. The valu’es
oltained were

k’ AD AID v
-—-----—-—-—— ---—. ——--- -———— -.--— --———— --—-- —.-

2.97 35 45 . 1.29

3.3 l(j 29 2.90
__—e— -———— -. —.—- ———-——— .——-—-—

Aln is the deflection with the plate and V is the
,.

ratio of the tvo deflections. Siilce in both cases the
frequency wos the same, V at the same time gives the
ratio of the moments in the shaft.

The above is an explanation of the fact that in the
torsiogram the deflections with the flight propeller are
generally smaller than those with a rigid brake propeller,
siilce the lowest natural frequency of the brake propeller
lies higher than that of the torsional vibration system -

~<qlln
that is, . These cases are represented in the

6; 1“
~s, ~M diagrams if the ~M function intersects the kl

axis to the left of the corresponding kl. value; for
the homogeneous rod kf = 1.875. Comparison of figures
5 to 15 shows that the resonance frequencies so defined
are practically independent of. the pitch angle. The
resultant falls practically in the torsional vibration
plane so that ‘on the entire brake propeller there. is no
greater moment than that computed from the to~siodiagram,
‘oecause the Ys(k’ ) curves for a = O and 90 run prac-

tically the””same nithin the range considered. In this
case ~f2(a=o) Itfh(a=su)o) and hence for any angle a

,–
h’

~!It:=o)‘Os 2 a + M(a==oo) $in2 a ‘UD= constant

Translation by S. Reiss,
National Advisory Committee
for Aeronautics.
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WITH DIFEERINT PROPELLERS ..

‘Propeller ‘ 1’ nl ,

1.

‘3
L .

~.

4.

5*

6.

7“

8.

Schwa.rZ, adjustable j-blade, for’
He 111; .D=330~ImII . . . . . I,3000 ‘

Schwarz, adjustable for SAM 323
He 50; D = 3650ma . . . ...12500

Schwarz, adjustable club for SAM 323
3=2160 mm . . . . . . ... . 480a

Sch~fer As-10; D = 2500 mm . . . .’. 2gb0

Ju PC . . . . . ... . ... . . . 2000

J-blade VIM adjustable dural for
Do 17 . . . . . . .. ...’... 2700 :

2-bl’ade~v~ adjusta”Dl e . . . . . . i 2200

Iieine,wood; D = 2270mI , . . . . ~ 3060

T%BLE 2”’””

‘-’k
15.0

: 9*33,> 4.93”
: 4.93

“ 4.93
; 4.93
g ti.93
h 3.3
i 2.4
k 2.4

02 $-z

nj, ooo
209,000

“345,000
417,000
528,000
720,0G0

1,130,000
1,690,000
2,320,000
3,530,000

,%’‘
6~oo

6300

6600

6600

“ ‘6400.

6700

.5600

6300
1

. .
T!@Lx 3

e’ ]7100

----1--

n2

7600

5700

9000

9300

5500

8%00

6900

9500

=-l-=
57/14 7300
54/13 -7300

I

45/lb
36/22
27/?7’
23/30
16/32

I I

f’ 7170I10/28
7230 6/20
7300 3/17

f 7300 2/15
7300 1/10

g 7300!0.5/9
I

7300
7300
jjoo
7300
7300

7y30
7500
7700

7930
gqqo

9600

“Aob

1/10
1.3/13
2/14

2.5/16
4.~/lg
7/19

AD

14/17
~3/9
12/5

11/2
9/0.7

6/0.6
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Figure l.= Torsional vibration character-
istic of a 4-cylinder in-line”-

engine as measured on test stand and in
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Figure 3.- Equiv- VFigure 4.- Figure ~8.- Blade length ?for the
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Figure 29.- Determination
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justable propeller.
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Figure 30.- Rotating mass
system,

Figure 31.- Equivalent
system of in-
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hub.
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Yigure 34.- Vibraticm moment Fundamental First hur- Second har-

in the propeller vibration moqic monic
blade. Figure 35.- Natural vibration modes

of the propeller on
engine.
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Figure 2.- Exciter apparatus
for coupling vi-

brations of crankshaft-pro-
peller system.

Fi&ure 27.- Exciter apparatus
for propeller vi-

‘orations with variable torsion
al elasticity and rotating mas
to approach the actual engine
conditions.

Figure 44.- Failure due-t
flexural. vibr

tions of a light metal pr
peller at the blade root.

.

s

o
a
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Figure 16.- Vibration tests
with prismatic

homogeneous rod for varying
pitch setting.

Figure 26.- Vibration tests
with a non-

homogeneotls rod.
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Figure 2.- Exciter apparatus
for coupling vi-

brations of crankshaft-pro-
peller system.

Figure 16.- Vibration tests
with prismatic

homogeneous rod for varying
pitch setting.

Figure 26.- Vibration tests
with a non-

homogeneous rod.

Fi&ure 27.- Exciter apparatus
for propeller vi-

‘orati@ns with variable torsiona-
1 elasticity and rotating mass
to approach the actual engine
conditions.

Fi@re 44.- Fa~lure due to
flexural vibra-

tions of a light metal pro-
peller at the blade root.
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Figure 5.- Rod function of
& prismatic homo-
geneous rod. r = O; ~= C).

Figure 6.- Rod function of
prismatic homo-

geneous rod. r = 0.12;
tf=o. ●
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Figure 7.- Rod function
& of prismatic
homogeneous rod. r = 0.22;
d= o.

Fi&~zre 8.- Rod function of
prismatic homo-

gei~eous rod. r = O; d= O;
~h/~f~ = 15. *
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Figure 9.- Rod function
+ of prismatic
homogeneous rod. r = 0;
0!= 15°; Jh/Jf~ = 15.
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Figure 12.- Rod function of
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Figure 20.- Comparison of
three different

engine functions ( ~ = 600,
r = O, Jh/Jfz = 16).

Figure 21.- Comparison of three
different engine

so functions ( ~= 60°, r = O,
p~cma z— Jh/Jf~ = 81) .
ho

a Figure 22.- Variation of ~(x)
< over the length of
an AS-8 Elektron adjustable

?0— propeller (I) and an I-W8 u-
Elektron adjustable propeller

o w 42 4J 40 05 UC 47 af usy. (II) (diameter 2.10 and 2.30 m).
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Figure 23.- Variation of Jfz(x)w
over the length of

an AS-8 Elektron adjustable m
propeller (I) and an HM 8 u- *

Zlektron adjustable propeller
#

(II) (diameter 2.10 and 2.30 u
m) . /
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Figure 24.- Variation of Jh(x)
over the length of

an AS-8 adjustable Elektron
propeller /)I anda HM8u-
Elektron adjustable propeller
(II) (diameter 2.10 and 2.30
m) .
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Figure 25.- Rod function
< for the fun-
damental vibro,tion of the
prismatic non-homogeneous
rod (p =I;q= l)r=O;
d. o.
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Figure 37.- Torsional vi-
bration dis-

placement of the rotating
mass as a function of the
angle ct.

Rod

Figure 38.- Dependence of the
angular displace-

ment of the hub on the angle ~.

—.— . Figure 39.- Dependence of

‘=. iE=i2ia-the rotating
mass displacement @D on-
the angle d for a rectang-
ular iron rod for the fun-
damental vibration, tor-
sional vikration, and first
harmonic, experimental.

Figure 40.- Dependence of
the rotating

mass deflection @D on the
angle ~ for an AS-8 Elek- ‘:=. “’l
tron adjustable ~ro~eller Fund. men AI vibrof).n Tor.,omu/ “,bre f ;0 ,-7

for the”fund.amental” vi-
bration, torsional vibrat-
ion, and first harmonic,
experimental. \

Figure 41.- Dependence of
< the rotating
mass deflection @D on the
angle d for a BMW Elek-
tron controllable propeller
for the fundamental vibra-
tion, torsional vibration,
first harmonic, second
harmonic, experimental.
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Figure 42.- Resolution of
the vibration

moment into t’ne“moments
about the two principal
axes of the cross section.

Figure 43.- Dependence of the
ratios ltin/YQand

~f~/MD on k! for the prismatic

homog&eous rod, computed for
a. 6(30, r = 0, Jh/Jfl = 16.

Figure 45.-
43 ~

Direction of vibra-
tion of the propeller

tip for various values of k!

K’<q
Figure 46.- Mode of vibra-

K‘-~9 4’>+?
,

/’ ~----

tion of pro- /’.
.\

~eller blade for various ‘\ /
-_.’

~alues of kl.
\

.+ ‘%Figureo”48r-”-Dlrecticsrrof the”
maximum vibration

moment “at the propeller blade
root for various torsional “
vibrations.
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